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Ancillary services

Energy Storage Systems (ESSs) will have an important role in the optimal operation of Active Distribution
Networks (ADNs). Within this context, this paper focuses on the problem of ESSs optimal siting and siz-
ing. Following similar approaches already proposed by the Authors, this paper proposes a multi-objective
procedure that accounts for various ancillary services that can be provided by ESSs to ADNs. The proposed
procedure takes into account the voltage support and network losses minimization along with minimiza-
tion of the cost of energy from external grid and congestion management. For the case of large-scale
problems, accounting for networks with large number of nodes and scenarios, the selection of the solu-
tion methodology is a non-trivial problem. In this respect, the paper proposes and discusses the use of the
Alternative Direction Method of Multipliers in order to define an efficient algorithm capable to treat
large-scale networks and, also, address the issue of the optimality of the solution. A real large-scale
network with real profiles of load and distributed photovoltaic generation is used as the case study to
analyze the effectiveness of the proposed methodology.

© 2015 Elsevier Ltd. All rights reserved.

Introduction

Active Distribution Networks (ADNs) are changing significantly
by integrating new technologies aiming at improving their level of
control. Energy Storage Systems (ESSs) have an important role in
this context [1]. Indeed, they have the ability to be indirectly used
to control the network providing several services like load shaving,
supplementing renewable resources, and, as a consequence, post-
pone investments needed for network reinforcements (e.g., [2,3]).
They are also capable of providing network ancillary services like
support to voltage and frequency controls and indirect control line
congestions. Additionally, they can be also used for network losses
reduction [4-6]. In this respect, one of the main problems associat-
ed to the use of ESSs in ADNs is to find their best location and size
(i.e., power and energy ratings) in order to maximize their impact
on the grid.

In this context, several works have been done related to optimal
planning of ESSs in ADNSs. This issue has been addressed in both
microgrids and ADNs. The Authors of [7] have proposed the use
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of a Genetic Algorithm (GA) to find the optimal capacities of ESSs
with the objective to minimize the operation costs of the targeted
microgrid. A methodology to site and size different types of ESSs
within the microgrid context has been proposed in [8]. A GA is
used to find the best solution to maximize the total net present val-
ue. A methodology for optimal siting and sizing of ESSs in a medi-
um voltage distribution network, with the goal of decreasing wind
energy curtailment and minimizing annual cost of the electricity, is
presented in [9]. A hybrid GA, sequential quadratic programming
algorithm is proposed in [10] to size and site DGs, energy storage
and reactive power compensation systems. The goals of the plan-
ning problem are the minimization of the total network losses
and the operation costs. The Authors of [6] have presented a hybrid
method integrating dynamic programming with GA to find the best
siting, rating and control strategy of ESSs, in order to minimize the
overall investments and network costs (energy cost and losses). A
cost-benefit analysis methodology is presented in [11] to find the
best sizing and siting of ESSs in distribution networks. The goal
of the optimization is to maximize the Distribution Network
Operator (DNO) profits from energy transactions, investment and
operation cost savings. The planning of ESSs connected to trans-
mission networks is also investigated in the literature (e.g.,
[12,13]). In [12] the optimal planning of ESSs in a network with
renewable, and consequent uncertain energy production, is pre-
sented. The objective of the optimization is to minimize the
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Nomenclature

ESS Energy Storage System

DG Distributed Generation

SoC State of Charge

Parameters

Tse(t) energy price at time ¢ for the scenario Sc

Ip, Ig investment costs of ESS with respect to power rat-
ing and energy reservoir respectively

Es maxEs.min maximum/minimum allowed SoC of ESS s

Sisc(f) complex power load at node i, time t, and scenario
Sc
Stee () DG complex power production at node i, time t,

and scenario Sc

Zj longitudinal impedance of the line between nodes
iandj (line I)

Wep,W ,01,Woss Weighting coefficients of different terms in objec-
tive function

Ts resistive loss factor of ESS s

squared values of the rated current of the line be-

tween buses i and j

squared values of maximum/minimum limits of

the network nodal voltages

fij,max

Umin; Umax

Bse probability of each scenario
o interest rate
y number of years after ESS installation correspond-

ing to each scenario

Variables

Cisc(t) load curtailment at node i, time t, and scenario Sc

pP Esp power rating and energy reservoir capacity of ESS s

Vjsc(t) square of voltage at node i, time t, and scenario Sc

fijsc(t) square of current flow on line ij at time t, and sce-
nario Sc

EE¥(t) energy flow from substation transformer at time ¢
and scenario Sc

E¢sc(t) energy stored in ESS s at time t, and scenario Sc

Py sc(t)Qss(t) active/reactive power consumed/produced by ESS s
at time t, and scenario Sc

Ly sc(t) resistive losses of ESS s at time t, and scenario Sc

Sijsc(t) complex line power flow between nodes i and j at
time t, and scenario Sc

mk, nk primal and dual residuals

Sets

t index of time

S index of energy storage systems

Sc index of scenarios

ij, 1 index of lines

i index of busses

k ADMM iteration

operation and investment costs of energy storage devices. The
application of ESSs in optimal allocation of wind capacity related
to distant wind farms is investigated in [13]. The methodology
simultaneously optimizes the wind power capacity of each site,
its ESS and the required transmission connection capacity.

A limitation of the above-listed papers is represented by the fact
that they have not accounted in the problem formulation the ancil-
lary services (e.g., voltage control) that ESSs can provide to ADNs.
In this respect, the Authors of this paper have proposed in [4] a
specific algorithm for assessing the optimal siting of ESSs to max-
imize their contribution to voltage control. Voltage sensitivity coef-
ficients, as a function of the nodal power injections, were used to
linearize the objective function of the problem and some of the
constraints. The augmented problem of optimal allocation of ESSs
in ADNs with a multi-objective (i.e., loss, energy cost, and voltage
deviation minimizations) has been investigated in [14] by using a
hybrid approach of GA and non-linear programming. Although
the approach proposed in [14] provides satisfactory results, it is
computationally expensive and the global optimal solution is not
guaranteed due to the non-convexity of the problem. As a matter
of fact, the computational inefficiency of this approach resulted
into limiting the possibility of solving large-scale problems associ-
ated to: (i) networks with large number of nodes and (ii) multiple
scenarios related to load and renewable resources volatilities (i.e.,
seasonal variability and yearly evolutions). In [15] a Second Order
Cone Programming (SOCP) formulation of the optimal power flow
(OPF) is used to define the problem of the optimal siting and sizing
of ESSs in ADNs. It considers both technical and economical goals.
However, as expected, the size of the problem increases drastically
with the increase of both network size and number of scenarios. As
a consequence, a dedicated decomposition method might be
required. These drawbacks have motivated this contribution.
Indeed, long-term optimal planning problems are normally large-
scale ones since they should include a reasonable number of sce-
narios to address the variations and uncertainties of various

parameters. Decomposition methods can be used to breakdown
large-scale problems into smaller ones. They have been used for
several power system problems and typical application examples
can be found in these references [16,17].

The purpose of the methodology presented in this paper is to
provide a tool to the ADN operator’s capable to define the optimal
planning of their own energy storage systems to support the net-
work operation in presence of massive stochastic distributed gen-
eration. In this respect, it is important to underline that the paper
does not focus on the comparative assessment of different techni-
cal solutions to support to the ADN operation. In this work we pro-
pose to use the Alternating Direction Method of Multipliers
(ADMM) [18,19] to break down the original problem and have a
distributed parallel convex optimization. The Second Order Cone
programming (SOCP) OPF approach of [20] is adapted to formulate
the problem of the optimal siting and sizing of ESSs in ADNs in
order to obtain a convex problem. In this respect, it is worth men-
tioning that the convex formulation of ESSs planning is a peculiar
aspect of the problem that has not been sufficiently addressed in
the literature. The proposed approach also accounts for a non-sim-
plified power flow in which the reactive power associated to shunt
admittances of lines/cables is represented. Additionally, the ESSs
are accurately modeled in terms of efficiency and SoC. Also their
interfaces to the AC grid are represented by means of active and
reactive power capability limits. The targeted problem is formulat-
ed as a multi-objective one including voltage deviations, network
losses, in addition to investment and operation cost minimizations.
It should be finally noted that this paper is an extended version of
[21] which has been presented at the 18th Power System
Computation Conference and was invited to be published in this
journal.

The rest of the paper is organized as follows: the section
‘Problem description’ illustrates the problem and provides its
formulation. The section ‘Solution methodology’ explains the
proposed methodology to breakdown and solve the problem. The
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application example, referring to a real network configuration with
real data, is presented in section ‘Simulation results’. In order to
highlight the peculiar capability of the proposed approach to deal
with large-scale problems, section ‘Computational performances’
provides the analysis of the computation performances of the pro-
posed algorithm with and without using the ADMM decomposi-
tion. The section ‘Conclusion’ closes the paper with final remarks
concerning the applicability of the proposed procedure.

Problem description

The context of the problem refers to an ADN in presence of non-
dispatchable DGs and uncontrollable loads (i.e., we do not consider
the presence of demand-side management). The objective is to find
the best locations and sizes of a limited amount of ESSs where the
limitation applies to the total DNO ESS investment. As anticipated,
the problem accounts for two main objectives; (i) minimization of
the investment costs associated to the installation of ESSs, (ii)
minimization of a virtual cost that accounts for the network opera-
tion including both technical and economical costs. It should be
noted that the charge/discharge cycles and the SoC level of ESSs
are not considered in the operation costs. This is because these
costs have been indirectly included in the problem by considering
the ESSs limited lifetime (i.e., 5 years). The objective function is as
in (1). It includes the investment cost of the ESSs and the network
operation costs. The objective of the operation cost considers dif-
ferent terms: (i) voltage deviations from the rated value, (ii) cost
of energy imported from the external grid, (iii) total network loss-
es, and (iv) total load curtailment and (v) feeders congestions. The
constraints of the problem are modeled by (2)-(12).

minimize: Investment cost+ Operation cost
Investment cost=Wgp{(P;"Ip) + (Es™I¢))}

Operation cost= (1_’;§fy 5 (Z [Z {Z(Wmlvi&(t) =1 (wisc(t)
- Sc

t i

> U || ;5 (t) < V) + Cise (1))

S Wssifyse(): (Fyset) > )+ WenEEX(6) nscm} })

[

Investment cost < Total budget (2)
Essc(t + 1) = Egsc(t) — Pssc(t) — Lesc(t)Vs € ESS (3)
EsminEs™ < Essc(t) < EsmaEs™ Vs € ESS (4)
0 < Pssc(t) < PP (5)
Poc() + Q25 (1) < (P)* Vs € ESS 6)
Lise(t) = 1s(P2sc(t) + Q2 (1)) Vs € ESS (7)

Sijsc(t) = Sisc(t) + Z (Shisc(£) — Znif isc () — SFee (D)

h:h—i
— Cisc(t)V(i,j) € G (8)
fysct) = 0 e 6 )
fij,Sc(t) <fij,max V(l,]) €G (]O)
Vise(t) = Vjse(t) + 2Re(Z5Syse (1)) — |z fiysc (£) (11)
Umin S 7/i.Sc(t) < Z/maxi S N (12)

The total budget constraint is represented by (2). The energy
stored in each ESS is dependent on the previous SoC and the
amount of energy stored/withdrawn from the ESS reservoir: Eq.
(3) models this constraint. Eqs. (4) and (5) show the capacity con-
straints of ESSs power rating and energy reservoir. The capability
curve of the ESSs is accounted by (6). It is worth observing that this
constraint is piece-wise linearized in order to preserve the con-
vexity of the whole optimization problem [15].! The resistive losses
of each ESS, associated to its efficiency, are approximated by equa-
tion (7) where we have considered them proportional to the square
of the apparent power flow flowing through a given ESS. Constraints
(8)-(12) define the constraints associated to the network operation.
The power balance is modeled by (8). The feeders current flow limits
are modeled by (9)* and (10) and the voltage limits are defined by
(11) and (12).

Solution methodology
Summary about the alternating direction method of multipliers [18]

The inherent large-scale nature of the problem lays in the fact
that it should cover a reasonable number of scenarios in order to
obtain a solution accounting for a sufficiently large set of variations
of the considered parameters. One of the most common approach-
es is to breakdown the problem into smaller ones. By following this
idea, we propose to use the ADMM to breakdown the original prob-
lem and obtain a distributed parallel convex optimization ones.

The ADMM is a powerful and well-suited method for decentral-
ized convex optimization. The peculiarity of the ADMM is that it
uses a decomposition-coordination procedure in order to find the
solution to a large global problem by solving small local sub-
problems in parallel. It uses the benefits of dual decomposition
and augmented Lagrangian methods [18,19]. In the following, the
ADMM is briefly described.

Suppose an optimization problem generically represented by
(13) and (14) where f, g, &, and { are conveX. The f and g are inde-
pendent from each other except they are linked by the constraint
(14).

minimize,, f(x)+ g(z)
subject to dom f = {x|x € ¢} (13)
domg = {z]z€ (}

Ax+Bz=c (14)

where A € RP", B ¢ R and ¢ € R when the variables x € R" and
z € R™. The augmented Lagrangian of this problem with respect to
constraint (14) has the form (15).

Ly(x,y,2) = f(X) + &(2) + Y (Ax + Bz — ¢) + (p/2)||Ax + Bz — |
subject to domf = {x|x e ¢}
domg=1{z|z € {}
(15)

The ADMM procedure is deployed as follows. First, the aug-
mented Lagrangian problem (15) is minimized with z and y being
fixed. Then the obtained x is used in the minimization of (15) with
x, and y being fixed. Finally, the dual multipliers are updated as
shown in (18) with the obtained x and z from the previous step.
This procedure will be continued until it converges to the global
optimal solution.

! The linearization of the constraints of the problem has been already addressed by
the Authors in [15].

2 This constraint is the relaxed version of its original formulation composed by an
equality instead of an inequality.
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X1 .= argmin,L, (x,y*, 2" (16)
Z41 .= argmin,L, (x**1, y*, 2) (17)
yk+1 ::yk +p(AXk+1 +sz+l _ C) (18)

ADMM application to ESSs optimal planning

The ADMM is used here to decompose the problem of the instal-
lation-cost minimization from the one of the operation-cost
Investment cost

minimization (f{x))

Operation cost
minimization(g(z))

Daily OPF Daily OPF Daily OPF

}

Dual update ‘

Fig. 1. ADMM procedure applied to the problem of ESS optimal planning.

minimization enabling a parallel formulation. The two problems
are linked by a set of linear constraints. These constraints imply that
the ESS capacities obtained in the first problem are identical to the
ones in the second. The application of the ADMM to the ESS optimal
planning problem is described in what follows. Functions f{x) and
g(z) of (13) represent, in our case, the ESS investment and the opera-
tion cost functions respectively. The linking constraints are the
capacities (power rating and energy reservoir) of the ESSs in invest-
ment and operation cost minimizations. They assure that the ESSs
power rating and energy reservoir capacities should be the same
for the two ADMM sub-problems. The objective function to be
minimized in the first step is the investment cost minimization of
(1) and it is constrained by total budget. The operation cost of (1)
is the objective that is minimized in the second step. The con-
straints of the second step are (3)-(12). The last step is the dual
update. These steps are iterated until the solver converges to an
optimal solution. The scheme of the proposed ADMM-based proce-
dure is shown in Fig. 1.

Simulation results

A real distribution network located in the southwest of
Switzerland has been used as a case study (see Fig. 2). The net-
work contains 287 nodes and is characterized by non-negligible
amount of PV installations with a total capacity of 5 MW. Nodes
where PVs are connected are shown in Fig. 2 together with the
obtained location of the ESSs inferred from the proposed

[

248

———

121

139 169 208] (250

170

243

Fig. 2. The schematic of the test case study.
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procedure. The simulation is done for five years (assumed life-
time of ESSs) and four weeks in each year: one in spring, one in
summer, one in fall, and one in winter. Experimentally measured
loads and generation profiles for this specific grid are available
with a discretization time step of 15 min. Total active power load
profiles of these four time periods for the first year are shown in
Fig. 3. The load profiles for the other years are considered to have
the same profile with a linear increase of 5% per year. The load is
distributed between the feeders as shown in Table 1. The energy
price profiles of these weeks (for the first year) are shown in
Fig. 4. The energy price is assumed to increase by 2% at each year.
The weight coefficients of the elements composing the objective
function are: voltage deviation W,, =0.61, total network loss
Wiess = 0.05, energy cost from external grid W,,=0.04 and the
feeder overloading above 80% of their respective capacities
W,yor=0.3. These values have been inferred using the Analytic
Hierarchy Process (AHP) [22]. First, the relative importance of
each element of the multi->objective function is defined by the
decision-maker (in this case, the DNO). Then, a pairwise compar-
ison is done between the objectives. These pairwise comparisons
are used to form a matrix. Finally, this matrix is used to calculate
the final weights.

The investment costs for ESSs capacity rating and energy
reservoir are assumed to be 1800 CHF/kW and 1000 CHF/kWh
respectively. These values are inferred from the report [23] with
specific reference to the Li-ion electrochemical batteries.

The annual interest rate is assumed to be 4%. The ADMM penal-
ty parameter p has been assumed equal to 100. The voltage
minimization term in the objective function is activated when

30 T
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Total load [MW]
2
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Time [15 minutes]

Total load |[MW|

10 20 30 40 50 60 70 80 90
Time [15 minutes|

Table 1

Average feeder loading in the four considered weeks. It should be noted that the
feeder connecting the bus #206 is not considered in this table.

Feeder # 1 2 3 4 5 6 7 8

Starting node of the 105 113 121 127 138 168 207 249
considered feeder
(see Fig. 2)

Load share with 062 251 132 7 20 5 029 28
respect to total
network loading
(%)

= Winter
== Summer
—Fall
—data4

Price (CHF/MWh)

300 400

Time period (15 minutes)

Fig. 4. Profiles of the electricity prices in the four considered weeks.

Total lond [MW]

10 20 30 40 50 60 70 80 90
Time [15 minutes|

Total load |[MW|

10 20 30 40 50 60 70 80 90
Time [15 minutes]

Fig. 3. Aggregated network loads: active-power profiles for the four considered weeks. (a) winter, (b) summer, (c) fall, and (d) spring. Each curve refers to a day of the week.
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Table 2

OPtimal ESS site and size.
ESS # 1 2 3 4
Node number 41 159 230 233
Power rating (MW) 1.1 1.87 0.47 1.12
Reservoir capacity (MWh) 34 3.32 0.48 1.15

the voltage exhibits a deviation from the rated value larger than
+2%.

The obtained optimal locations and ratings of ESSs are shown in
Table 2. As it can be seen, 4 nodes are selected to install ESSs. All
the selected nodes are close to the largest loads. For the two cases
of the grid without and with optimally located ESSs, Table 3 shows
the total amount of network losses, feeder overload above 80% of
the rated current and energy cost imported from the external grid.
All these quantities exhibit a clear decrease in case where
optimally-allocated ESSs are available in the network.

Fig. 5 shows the Cumulative Distribution Function (CDF) of
nodal voltages in both analyzed cases (i.e., with and without
ESSs). It is evident that the presence of ESSs allows to largely
improve the ADN quality-of-service with respect to voltage
variations.

The SoC of all the ESSs in two days, one day in summer and one
day in winter, are shown in Figs. 6 and 7 respectively. As it can be
observed, the figures show how the integral constraint on the ESS
SoC has been respected. Figs. 6 shows that, in the summer period,
all of the ESSs, except the one that is on the feeder with PV produc-
tion follow the load profile. The ESS 1, which is located on the feed-
er with PV production is responding to the energy price profile. It
stores excess PV production during the day and produce energy
during high-peak hours. Fig. 7 shows that the ESSs SoC in the win-
tertime period is different. In particular, all the ESSs are responding
to the load profile. In this respect, it is worth observing that these
ESSs are located in the feeders characterized by the highest loading
level with associated largest voltage variations. Thus, they tend to
minimize the corresponding elements of the multi-objective func-
tion since they have a larger priority. In view of the above consid-
erations, it is evident how the proposed process is capable to locate
each ESS by distinguishing their influences on: the network qual-
ity-of-service, the local energy balance and the network zone of
influence.

It should be noted that the case study investigated in this
paper does not require any load curtailment. It is also worth not-
ing that the main objective investigated in this paper is the ESSs
contribution to increase the ADN quality-of-service (i.e., compen-
sate the voltage deviations). Therefore, this specific objective is
characterized by the highest weight in the objective function.
As a result, as it can be noted from Table 3, the benefits resulting
from the energy arbitrage cannot justify the ESS high capital cost
alone.

A reasonable stopping criterion is that the primal and dual resi-
duals have to be small [18]. The objective sub-optimality is small
when these two values are small [18]. The progress of primal and
dual residuals as a function of the iteration number is shown in
Figs. 8 and 9, respectively. The primal and dual residuals are calcu-
lated as (19) and (20) respectively and used as the stopping criteria
[18].

Table 3
Changes in the each term of the objective function.

==With ESS
— Without ESS

CDF

0.92 0.94 0.96 0.98 1 1.02
Voltage (p.u.)

Fig. 5. The CDF of nodal voltages for the cases with and without optimal ESS siting
and sizing.

0.8 .
--ESS 2

--ESS 4
--ESS 3
ESS 1

Time [15 minutes]

Fig. 6. SoC profiles of the ESSs in summer period (base value of energy is 5 MW h).

0.8

40 50 60 70 80 90
Time [15 minutes]

Fig. 7. SoC profiles of the ESSs in winter period (base value of energy is 5 MW h).

5 10 15 20 25 30 35 40
Iteration

Fig. 8. Norm of primal residual versus iteration.

Total network losses in
the simulated weeks (MWh)

Total energy cost imported from
the external grid in the simulated weeks (CHF)

Total feeders loading with
percentages larger than 80% (p.u.)

Optimal ESS siting and sizing 714.7
Without ESS 859.02

898450
985140

0
14.7
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0.8 T T T T T T T
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= 04} 1
02} 1
0 . ,
5 10 15 20 25 30 35 40
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Fig. 9. Norm of dual residual versus iteration.

Table 4
Computational time comparison between two cases: (i) with ADMM, (ii) without
ADMM.

1 scenario 10 scenarios 15 scenarios
ADMM 43 s (converged in 41 s (convergence 42 s (convergence
40 iterations) in 40 iterations) in 40 iterations)
Without 3680 s 35952.98 s 50772.87 s
ADMM
Im*|| = [|AX" + BZ — | (19)
k k k
|| = 124" = 2] (20)

Computational performances

This section illustrates the computational advantages associat-
ed to the use of the ADMM with respect to the case in which we
do not decompose it. In this respect, Table 4 shows the computa-
tional time to solve the problem with respect to these two
conditions.

As it can be inferred from Table 4, with the increase of the
number of scenarios, the computational time increases almost
exponentially for the case of a solution without the ADMM.
Additionally, when the number of scenarios increase, also the
memory allocation required by the solver increases causing out-
of-memory issues. On the other hand, with ADMM the increase
of scenarios just increase the number of sub-problem and it does
not increase the size of each individual optimization subproblem.

It should be also noted that the value of penalty parameter p
has an important impact on the computational time of the sub-
problems and the number of iterations required for the conver-
gence. With a small values of p (i.e., 0.5), the computational time
of each subproblem at the first couple of iteration is around
400s and the required number of iterations for convergence is
around 100 whereas with p equal to 100 the computational time
is around 40 s and the problem converges in less than 40 iterations.

Conclusion

The paper has proposed a decomposition method based on the
ADMM methodology applied to the problem of ESSs optimal siting
and sizing in ADNSs. The objective function of the problem accounts
for different benefits of the ESSs. Indeed, the targeted problem has
been formulated to account for: voltage deviations, network losses,
in addition to investment and operation cost minimizations and
congestion management.

Compared to other works already published by the Authors on
the same subject, the paper has shown how the use of ADMM has
allowed to define an efficient procedure to solve a large-scale prob-
lem accounting for networks with realistic large number of nodes
and scenarios. In this respect, after the description of the proposed
planning procedure, the paper has discussed its application to the
case of a real large-scale network with real profiles of load and dis-
tributed generation coming from photovoltaic units.

It is evident from the obtained results how the proposed pro-
cess is capable to locate each ESS by distinguishing their influences
on: the network quality-of-service, the local energy balance and
the network zone of influence. It can be concluded that the pro-
posed process can be used by DNOs to evaluate the possible use
of ESSs as a valid alternative to investments in grid reinforcement
or massive telecom infrastructure for direct DG control.
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